بسم الله الرحمن الرحيم

المملكة الاردنية الهاشمية وزارة التربية وانتعليم

امتحان الشامل نهائي لعام ٢٠٢١ /الفصل الثاني

مدة الامتحان:ساعتان

المبحث: الرياضيات/الرابع

د. عطاللة العديني٩ ٠٧٩٥٦٢٣٠٠٠

الفرع: الادبي

ملحوظة: احب عن جميع الاسئلة وعددها (٣) علماً بأن عدد الصفحات (٢)

السؤال الاول: ضع دائرة حول رمز الاجابة الصحيحة

۲) إذا كان
$$\int \mathfrak{G}(m).$$
 ع $m = 7m^{7} + 3m$ فإن $\tilde{\mathfrak{G}}(1)$ تساوي

$$-1$$
 إذا كان $\int_{-1}^{\xi} b(m) . > m = 7, \int_{\xi}^{1} \frac{a(m)}{7} . > m = 0$ ، فإن $\int_{-1}^{\xi} b(m) - a(m) . > m$

ک) إذا كان
$$\int_{Y}^{\infty} 7.5$$
 ه فإن قيمة الثابت تساوي

٥)قيمة
$$\int (o-m)^{7}$$
 د س تساوي

$$+\frac{r(w-o)}{r} (-\frac{r(w-o)}{r}) + \frac{r(w-o)-r}{r} (-\frac{r(w-o)}{r})$$

$$= +\frac{r(\omega-0)-}{0} (2) \qquad \qquad = +\frac{r(\omega-0)}{0} (3)$$

٦) قيمة (٣جا(٦س)د س تساوي

$$+\frac{\pi^{2}(\Gamma^{\infty})}{7}+\pi \qquad \qquad (1)$$

$$++\frac{(3)}{7}+$$
 (ع $++\frac{(7)}{7}+$ ج $++\frac{(7)}{7}+$ ج

ب) جد قيمة التكاملات التالية

(1)
$$\int_{-\infty}^{\infty} \frac{w^{2} + rw - V}{w - l} \cdot \varepsilon w$$

$$rac{\omega Y - \gamma}{\gamma \left(\omega Y - \gamma \omega\right)} \left(Y - \frac{\gamma}{\gamma} \left(\frac{\omega Y - \gamma}{\omega Y} \right) \right)$$

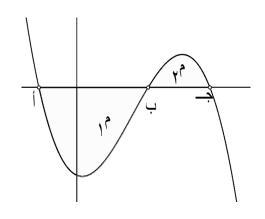
السؤال الثاني: ضع دائرة حول رمز الاجابة الصحيحة

1)
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \int_{-\infty}^$$

$$(2)$$
 قيمة $\int_{-\infty}^{\infty} \frac{0}{|x|^{2} m}$ دس تساوي

ه) إذا كان الاقتران ق معرفاً على الفترة $[\ 1\]$ ه $[\ 0\]$ وكان $[\ 0\]$ ، فإن قيمة $[\ 0\]$ $[\ 0\]$

ب) إذا كان $\int_{1}^{1} (7w + 7) \cdot sw = 0$ ، جد قيمة الثابت أ ؟


ج) إذا كانت
$$v(Y) = 1$$
 ، $v(0) = Y$ جد $\int_{Y} Yw\bar{v}(w^{Y} + 1).$

د) إذا كان ميل المماس لمنحنى الاقتران ص= ق(س) عند النقطة (س، ص) يساوي $(7 - 1)^{7}$ وأن منحناه يمر بالنقطة $(7 - 1)^{7}$ جد ق(7)

ه) جد مساحة المنطقة المغلقة المحصورة بين منحنى الاقتران ق (س) = $7m^{7}$ – 17 س ومحور السينات، والمستقيمين على الفترة [• ، ۲] .

السؤال الثالث: ضع دائرة حول رمز الاجابة الصحيحة

۱) يتحرك جسيم على خط مستقيم ، ويعطى تسارعه بالعلاقة v(u) = (v) حيث ن الزمن بالثواني ، جد سرعة الجسيم بعد ثانية من بدء الحركة علماً بأن سرعته الابتدائية $3(\cdot) = 1$

٣) مساحة المنطقة المحصورة بين ومحور السينات في [أ، ج] تساوي

السو ال الرابع:أ) محموعة مكونة من ٤ معلمين و ٣ طلاب يراد تكوين لجنة ثلاثية بحيث تتكون من معلمين اثنين على الأقل؟

$$(1) + \frac{10 + 15}{(1) \times 1} \rightarrow (1)$$

$$(\Upsilon \cdot \circ)$$
 جد U إذا كان $U = \frac{(\Upsilon + \sigma)}{(G + \sigma)!} = U$

$$\binom{17}{7} - \left(\xi \cdot 7\right)J \times \frac{7}{7} = !(1-i)! = \frac{7}{7} \times U(7) + \frac{1}{7}$$

السؤال الخامس: ضع دائرة حول رمز الاجابة الصحيحة

١) عدد المجموعة الجزئية الثنائية التي يمكن تكوينها من بين ٥ عناصر .

$$(7)$$
 (۲) (۲) (7) (۲) (7) (۲) (7)

 Υ) كم كلمة من Υ أحرف مختلفة يمكن تكوينها من مجموعة الأحرف $\{m, b, d, a\}$ ، علماً بأنه ليس شرطاً أن يكون للكلمة معنى Υ

$$r \times \xi$$
 (ع $r \times \xi$ ج $r \times \xi$ (ج $r \times \xi$) ال (۲۰۰۶) ال (۲۰۰۶ ب خ $r \times \xi$ ال (۲۰۰۶ ب خ $r \times \xi$ ب ال (۲۰۰۶ ب خ r

٣) بكم طريقة يمكن اختيار رئيس ومساعد له من بين ٥ أعضاء

$$^{\circ}$$
 ا) ل (۲۰۰) (۲ $^{\circ}$

٤) إذا كان التوزيع الاحتمالي للمتغير العشوائي س معطى بالجدول، جد قيمة ج

٣	۲	١	•	س
٠.١	ج	٠.٤	٠.٣	ل(س)

ب) يحتوي صندوق على ٤ كرات حمراء و ٦ كرات بيضاء سحبت من الصندوق ٣ كرات على التوالي مع الإرجاع، إذا دل المتغير العشوائي س على عدد الكرات الحمراء، كوّن جدول التوزيع الاحتمالي

ج) إذا كان المتوسط الحسابي ٢٠ والانحراف المعياري ٦ جد ما يلي: إذا كان الفرق بين علامتي طالبين ٩ فما الفرق بين العلامتين المعياريتين المناظرتين لهاتين العلامتين

د) إذا كانت رواتب (۱۰۰۰۰) موظف تتبع للتوزيع الطبيعي بمتوسط حسابي ۳۵۰ دينار ؟ وانحراف معياري ۲۰، جد عدد الموظفين الذين تتحصر رواتبهم بين ۳۲۰ و ٤٠٠ دينار ؟

ملاحظة: يمكنك الاستعانة بالجدول التالي

۲.٥	۲	١	٠.٥	*	ز
٠.٩٩٣٨	٠.٩٧٧٢	٠.٨٤١٣	٠.٦٩١٥	٠.٥	ل (ز)

السؤال السادس: ضع دائرة حول رمز الاجابة الصحيحة

(ا) إذا كان (ز) متغيراً عشوائياً معيارياً ، وكان ل(ز
$$\geq$$
 أ) = \cdot . • فإن قيمة ل(ز \leq –أ)

٢) إذا كان المتوسط الحسابي لأعمار مجموعة من الأشخاص ٤٢ سنة والانحراف المعياري ٤

، فإن العمر الذي ينحرف تحت المتوسط انحرافين معياريين؟

٣) معتمداً على الجدول المجاور الذي يبين العلامات المعيارية لطالب في ٤ مباحث فالمبحث الذي يكون تحصيل الطالب فيه الاضعف ؟

عربي	جغرافيا	تاريخ	رياضيات	المادة
	٠,			العلامة
,	, –	•	1	المعيارية

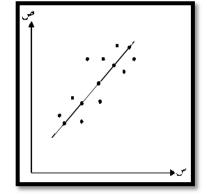
٤) الانحراف المعياري للتوزيع الطبيعي المعياري هو:

اً) ۱
$$(-1)$$
 (-1) (-1) (-1)

ب) معتمداً على الجدول الآتي الذي يبين قيم س ، ص جد معادلة خط الانحدار للتنبؤ يقيم ص إذا علمت قيم س

٧	٤	0	٩	١.	س
١٦	١.	١٢	۲.	77	ص

ج): إذا كان س ، ص متغيرين وعدد قيم كل منهم ٤ ،


$$\sum_{l=2}^{\xi} \left(\overline{w}_{l} - \overline{w}\right) \left(\overline{w}_{l} - \overline{w}\right) = -\xi \sum_{l=2}^{\zeta} \left(\overline{w}_{l} - \overline{w}\right)^{\gamma} = \gamma \ ,$$

$$\sum_{b=1}^{s} \left(\frac{1}{\omega} - \frac{1}{\omega} \right)^{T} = \Lambda$$
، جد معامل ارتباط بیرسون الخطي ، وحدد نوع العلاقة

السؤال السابع: ضع دائرة حول رمز الاجابة الصحيحة

١) أي معاملات الارتباط أقوى:

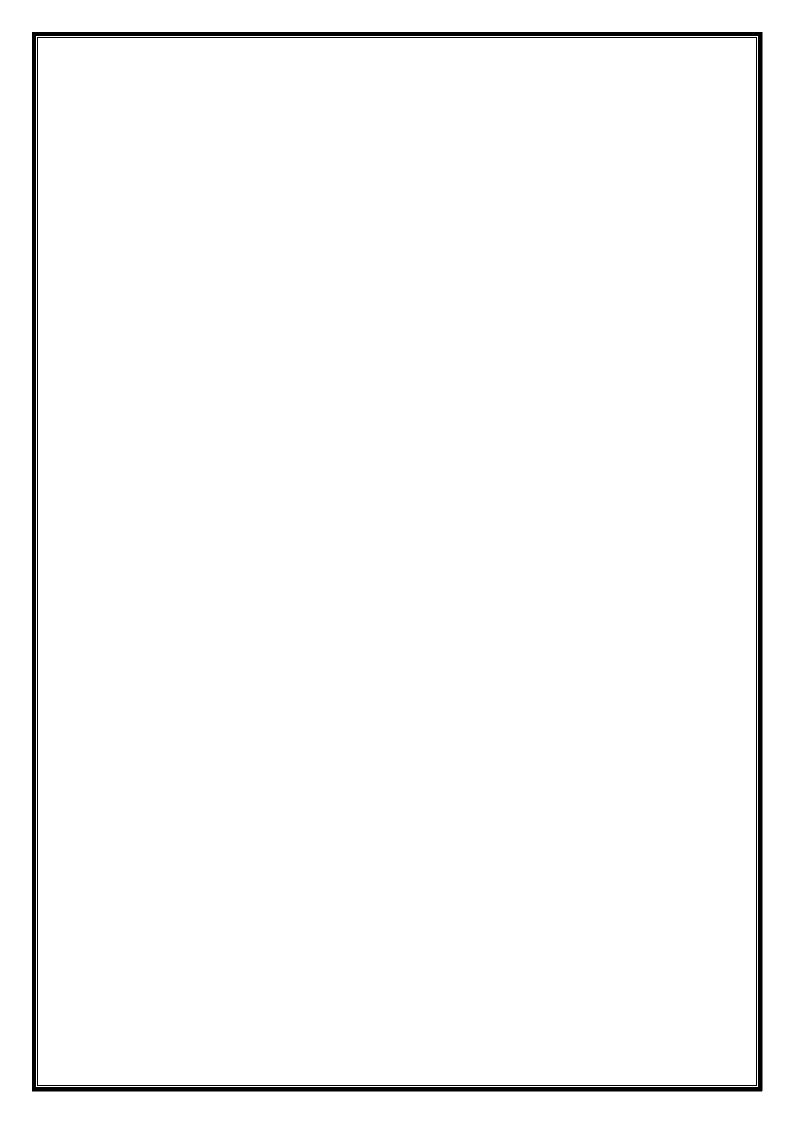
٢) معتمداً على الشكل فإن قيمة الارتباط بينهما:

ج) ١٥٠٠٠

*) إذا كان معامل ارتباط بيرسون بين س ، ص هو * . • جد معامل الارتباط بين س * ، ص

إذا كان س*= ٤س + ٥ ، ص*= ٦ +٣ص

٥) إذا كانت معادلة خط الانحدار البسيط بين معامل الذكاء (س) والمعدل التحصيلي(ص) هي


-11 ، فتنبأ بالمعدل التحصيلي لطالب معامل ذكائه -11

7) إذا كانت معادلة خط الانحدار البسيط بين عدد ساعات الدراسة (س) والمعدل التحصيلي

علی معدل ۲۸

انتهت الاسئلة

د. عطاالله العديني

