

الوحدة الخامسة :القوة و الحركة

علوم الصف السابع

المعلمة: هبة المنفلوطي

الدرس الأول: وحف العركة

الحركة: هي تغير مستمر في موقع جسم ما مقارنة بأجسام ثابتة حوله.

لتحديد موقع جسم يجب تحديد نقطة مرجعية ثم بُعده و اتجاهه بالنسبة لهذه النقطة.

فالنقطة المرجعية (نقطة الإسناد) : هي نقطة نحددها لتحديد موقع جسم

أما الموقع: هو بعد الجسم عن نقطة إسناد (نقطة مرجعية)

مثال:



لتحديد موقع عامر بالنسبة للمتحف

يكون المتحف هو النقطة المرجعية وحسب الاتجاهات يكون موقع عامر شرق المتحف

*لتحديد موقع حسام بالنسبة للملعب

يكون الملعب هو النقطة المرجعية وحسب الاتجاهات يكون موقع حسام شمال غرب الملعب.

المسافة و الإزاحة:

المسافة: هي الطول الكلي للمسار الذي يسلكه الجسم في أثناء انتقاله بين نقطتين و يرمز لها بالرمز

(s).

وحدات المسافة: الكيلو متر ، المتر ، السنتيمتر ، المليمتر .

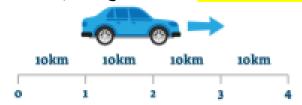
و هي <mark>كمية قياسية .</mark>

الإزاحة: هي أقصر مسار مستقيم يصل بين نقطة بداية الحركة و نهايتها .

و هي <mark>كمية متجهة</mark> و يرمز لها بالرمز

(Δx) و يُقرأ دلتا و تعني الفرق بين الموقع النهائي و الموقع الابتدائي

 $\Delta X = X2 - X1$

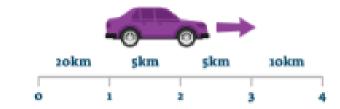

و لحساب الإزاحة يجب تحديد نقطة الابتداء و نقطة الانتهاء.

**تكون الإزاحة تساوي صفر ، إذا كانت نقطة الابتداء هي نفسها نقطة الانتهاء

أنواع الحركة في خط مستقيم:

1-حركة منتظمة: عندما يقطع الجسم مسافات متساوية في أزمنة متساوية.

تكون السرعة ثابتة في الحركة المنتظمة

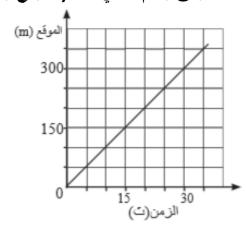

من الأمثلة على الحركة المنتظمة:

حركة الكواكب في مدار ها .

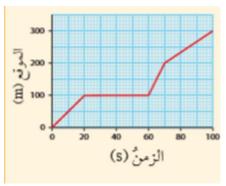
ثبات مؤشر عداد السيارة.

رجل يمشي في طريق و يقطع مسافة متر كل 10 ثواني .

2-حركة غير منتظمة: عندما يقطع الجسم مسافات غير متساوية في أزمنة متساوية


تكون السرعة متغيرة في الحركة غير المنتظمة

من الأمثلة على الحركة غير المنتظمة:


سيارة تسير في ازدحام.

رجل يمشي في طريق يسرع احيانا و يبطئ أحياناً نتيجة التعب.

• يمكن وصف الحركة باستخدام المنحنيات لمعرفة نوع الحركة عن طريق رسم بياني بين (الموقع و الزمن)

خلال الفترة الزمنية من (0-15) ثانية قطع الجسم مسافة 150 م خلال الفترة الزمنية من (15- 30) ثانية قطع الجسم مسافة 150 م إذاً يقطع الجسم مسافات متساوية في أزمنة متساوية إذاً حركة الجسم هنا حركة منتظمة.

خلال الفترة الزمنية (0-20) قطع الجسم 100 م خلال الفترة الزمنية من (20-40) و (40-60) توقف الجسم عن الحركة و لم يقطع أي مسافة خلال الفترة الزمنية (60-80) قطع الجسم مسافة 125 م إذاً يقطع الجسم مسافات غير متساوية في أزمنة متساوية الجسم مسافات غير متساوية عير منتظمة .

<mark>السرعة القياسية</mark>

هي مقدار المسافة التي يقطعها جسم ما في فترة زمنية محددة . يرمز للسرعة القياسية (٧)

السرعة القياسية = المسافة المقطوعة / الزمن الكلى المستغرق

عااااجل + مهم مهم

ملاحظه 1 عندما ترى ان وحدة السرعه السرعه الذا يُجِب ان تكون وحدة الزمن h ملاحظة 2 عندما ترى ان وحدة السرعة m/s اذا يجب ان تكون وحدة الزمن s ملاحظة 3 : للتحويل من كيلو متر إلى متر : نضرب ب1000

للتحويل من متر إلى كيلو متر: نقسم على 1000

مثال : ركضت لين مسافة 100 متر في 20 ثانية

المعطيات : S = 100m t=20 s

الخطوات : = 100/20

ملاحظة 4: للتحويل من دقيقة إلى

ثانية: نضرب ب60 للتحويل من ثانية إلى دقيقة: نقسم على 60

> مثال : ركضت قطة مسافة 20 متر في 5 ثواني احسب سرعتها ؟

> > المعطيات : S = 20 m

الخطوات : v = s / t= 20/5= 4 m/s

متال : كم مسافة تقطعها سيارة تتحرك بسرعة ثابتة مقدارها (12 m/s) في 10 دقائق ؟؟

> ر المعطيات : v = 12 m/s t=10 m

عااااجل ومهم نحتاج لتحويل الزمن من الدقائق الى الثواني تذكر ان الدقيقة عبارة عن 60 ثانية فنضرب = 10 * 600 = 600

الخطوات: **S** = **v** * **t** = 12 * 600 = 7500m

مثَّالُ : يمارس عبد الله رياضة ركوب الدراجة الهوائية اذا علمت انه قطع مسافة 1500m خلال 10 دقائق احسي سرعته.

> s = 1500m t=10 m

المعطيات:

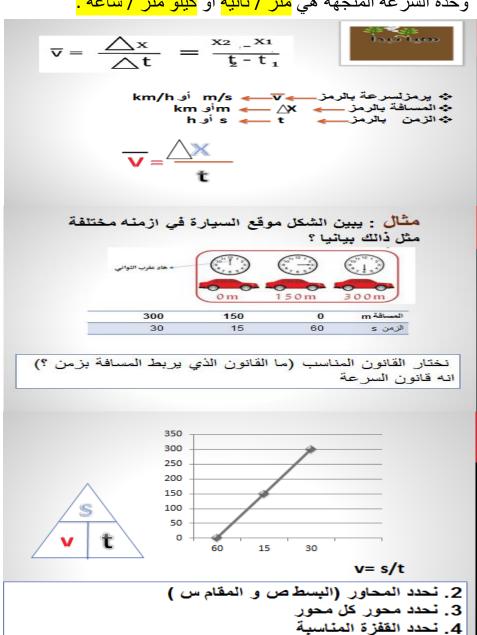
عااااجل ومهم نحتاج لتحويل الزمن من الدقائق الى الثوائي تذكر ان الدقيقة عبارة عن 60 ثانية فنضرب = 10 * 600 = 600 الخطوات:

v = s/t = 1500/600 = 2.5m/s

مثال : كم المسافة التي تقطعها سيارة تتحرك 12 m/s

المعطبات : t=10 v = 12m/s

الخطوات:


عااااجل ومهم نحتاج لتحويل الزمن من الدقائق الى الثواني تذكر ان الدقيقة عبارة عن 60 ثانية فنضرب = 10 * 600 = 600

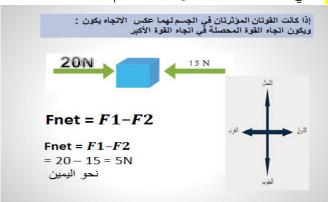
s= v*t **= 12 * 600** = 7200m

السرعة المتجهة

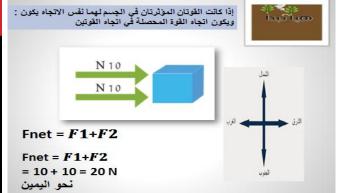
هي الإزاحة التي يحققها جسم ما في فترة زمنية محددة . يرمز للسرعة المتجهة . $^{\text{\textsf{V}}}$ تحدد السرعة المتجهة بالمقدار و الاتجاه .

السرعة المتجهة = الإزاحة الكلية / الزمن الكلي المستغرق. وحدة السرعة المتجهة هي متر / ثانية أو كيلو متر / ساعة.

5. نضع النقاط على الرسم البيائي


الدرس الثاني : القوة

- تصنف الأجسام من حيث حالتها الحركية
 - 1-أجسام ساكنة 2 أجسام متحركة


 - 1- قوة دفع 2- قوة سحب
 - ❖ القوة تغير حالة الجسم الحركية
- من ساكن إلى متحرك أو من متحرك إلى ساكن
 - القوة ممكن أن تغير من شكل الجسم
- بالقوة هي مؤثر خارجي يؤثر في جسم ما فيغير من حالته الحركية أو شكله أو الاثنين معاً
 - القوة تعتبر كمية متجهة
 - ❖ يلزم لتحديدها مقدار و اتجاه
 - ♦ و يرمز لها بالرمز F.
 - ♦ وحدة القوة هي نيوتن
- اتجاه القوة بالرسم من خلال قطعة مستقيمة طولها يتناسب مع مقدار القوة مع وضع سهم يدل على اتجاه القوة .

8

- ♦ القوى المحصلة
- یمکن أن تؤثر أكثر من قوة فی جسم ما فی وقت و احد
- ❖ نوحد هذه القوى في قوة واحدة تسمى القوة المحصلة التي تحدد الحالة الحركية للجسم .

القوى الغير متزنة	القوى المتزنة	من حيث
هي مجموعة من القوى تؤثر في جسم ما و تحدث تغيراً في حالته الحركية	هي مجموعة من القوى تؤثر في جسم ما دون أن تحدث تغيراً في حالته الحركية	المفهوم
لا تساوي صفر	تساوي صفر	القوة المحصلة
يغير حالته الحركية	لا تغير حالته الحركية (إذا كان ساكنا يبقى ساكنا)	حالة الجسم المتاثر في القوة

الدرس الثالث : قوانين نيوتن في العركة

إسحاق نيوتن هو عالم انجليزي سميت وحدة قياس القوة باسمه تكريماً له

وضح العلاقة بين الحركة و القوة

وضع قوانين الحركة الثلاث التي تبين تأثير القوة على حركة الأجسام.

قانون نيوتن الأول:

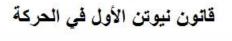
القوة المحصلة المؤثرة بالجسم تكون صفر في حالتين:

1-الجسم ساكن

2-الجسم متحرك بسرعة ثابتة بالمقدار و الاتجاه .

أولاً الجسم الساكن:

الأجسام الساكنة تبقى ساكنة ما لم تؤثر فيها قوة تجعلها تتحرك .


ثانياً الجسم المتحرك:

تبقى متحركة بسرعة ثابتة و اتجاه ثابت ما لم تؤثر فيها قوة خارجية .

يكون تأثير القوة الخارجية على الأجسام المتحركة:

1-إما زيادة في مقدار السرعة 2-نقصان في مقدار السرعة

3-تغيير في اتجاه حركتها

الطابة المتحركة بسرعة ثابتة ستبقى كذلك إلا إذا

إلا إذا واجهها عائق...

ماهى قوة الاحتكاك ؟

هي قوة خارجية تؤثر في الأجسام المتحركة تجعلها تتوقف عن حركتها.

إذا ينص قانون نيوتن الأول على أن:

"الجسم الساكن يبقى ساكناً و الجسم المتحرك بسرعة ثابتة سيستمر في حركته بالسرعة الثابتة ، ما لم تؤثر فیه قوی غیر متزنة "

و يسمى بقانون القصور الذاتي.

قانون نيوتن الثانى:

إذا أثرت قوى غير متزنة في الأجسام فإنها تغير من حالتها الحركية.

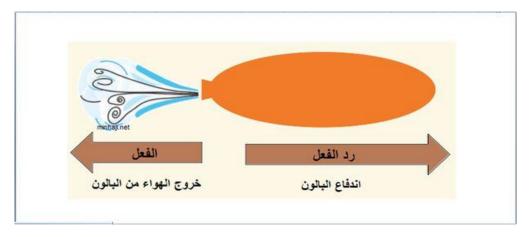
و التغير في حالتها الحركية أي أنه يحدث تغير في السرعة.

العوامل التي يعتمد عليها التغير في السرعة:

1-كتلة الجسم

كلما كانت كتلة الجسم أكبر ستسبب القوة تغيراً أقل في سرعة الجسم.

2-القوة المحصلة


كلما كانت القوة المحصلة المؤثرة في الجسم أكبر يكون التغير في السرعة أكبر.

قانون نيوتن الثالث:

لكل فعل رد فعل مساوله في المقدار و معاكس له في الاتجاه.

قوة الفعل و رد الفعل تؤثر ان في جسمين مختلفين . *لا توجد قوىً مفردة في الطبيعة .

انتهت الوحدة و تم انهاء المادة